Trigonometric Functions Maze

Directions: Every angle has a match. Pick three different colors, shade sine angles and measures in one color, cosine angles and measures in a second color and tangent angles and measures in the third color.

$\left(\sin\frac{\pi}{6}\right)$	$\sqrt{-\sqrt{3}}$	$\cos \frac{\pi}{3}$	$\frac{1}{2}$	$\tan\frac{\pi}{6}$	1	$\sin \frac{\pi}{2}$
$\frac{1}{2}$	$\tan \frac{5\pi}{3}$	0	$\cos \frac{3\pi}{4}$	$\sqrt{\frac{3}{3}}$	$\cos \frac{11\pi}{6}$	$\frac{\sqrt{3}}{2}$
$\cos \pi$	$\frac{1}{2}$	$\tan \pi$	$-\frac{\sqrt{2}}{2}$	$\cos \frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{7\pi}{6}$
-1	$ \frac{5\pi}{6} $	$\frac{\sqrt{2}}{2}$	$\tan \frac{\pi}{3}$	$\sqrt{3}$	$\sin \pi$	$-\frac{1}{2}$
$\tan \frac{\pi}{4}$	1	$\sin \frac{\pi}{4}$	1	$\cos 2\pi$	0	$\cos \frac{3\pi}{2}$
$-\frac{1}{2}$	$\cos \frac{2\pi}{3}$	$\sqrt{3}$	$\tan \frac{4\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\sin \frac{2\pi}{3}$	0
$\tan \frac{7\pi}{4}$	-1	$\cos \frac{5\pi}{3}$	Undef.	$\sin \frac{\pi}{3}$	1	$\tan \frac{5\pi}{4}$
$-\frac{\sqrt{2}}{2}$	$\sin \frac{5\pi}{4}$	$\frac{1}{2}$	$\tan \frac{\pi}{2}$	$\frac{\sqrt{3}}{2}$	$\cos \frac{4\pi}{3}$	$-\frac{1}{2}$

Trigonometric Functions Maze

Directions: Every angle has a match. Pick three different colors, shade sine angles and measures in one color, cosine angles and measures in a second color and tangent angles and measures in the third color.

$ \begin{array}{c c} \hline \sin 30^{\circ} & -\sqrt{3} & \cos 60^{\circ} & \frac{1}{2} & \tan 30^{\circ} & 1 \\ \hline \end{array} $
$\frac{1}{2} \left(\tan 300^{\circ} \right) \left(\cos 135^{\circ} \right) \left(\frac{\sqrt{3}}{3} \right) \left(\cos 330^{\circ} \right) \left(\frac{\sqrt{3}}{2} \right)$
$ \begin{array}{c c} \hline \cos 180^{\circ} & \frac{1}{2} & \cos 30^{\circ} & \frac{\sqrt{3}}{2} & \sin 210^{\circ} \end{array} $
$-1 \qquad \sin 150^{\circ} \qquad \frac{\sqrt{2}}{2} \qquad \tan 60^{\circ} \qquad \sqrt{3} \qquad \sin 180^{\circ} \qquad -\frac{1}{2}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$-\frac{1}{2} \left(\cos 120^{\circ}\right) \sqrt{3} \left(\tan 240^{\circ}\right) \left(\frac{\sqrt{3}}{2}\right) \left(\sin 120^{\circ}\right) = 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$-\frac{\sqrt{2}}{2} \left(\sin 225^{\circ} \right) \left(\frac{1}{2} \right) \left(\tan 90^{\circ} \right) \left(\frac{\sqrt{3}}{2} \right) \left(\cos 240^{\circ} \right) \left(-\frac{1}{2} \right)$