\qquad
Directions: Begin in cell \#1. Show the work necessary to answer the question. Use separate paper if necessary. Circle your answer, then search for it. Call that cell \#2 and continue in this manner until you complete the circuit (get back to the beginning).
NOTE: Starting on question number 15, you may use a calculator.

© Virge Cornelius for Kathy Stevens and her students! 2021

\qquad Answer: 290 A \$240 investment compounded continuously at a 3% interest rate will be worth how much (in dollars) after 5 years?	\# \qquad Answer: 310 At what annual interest rate should you invest if you want your money to double in 25 years?
\# \qquad Answer: $\frac{2}{5}$ Given $\frac{2}{6^{a}} \cdot 216^{a-4} \cdot \frac{1}{2}(6)^{-3 a}=6^{k a+b}, k+b=$?	\# \qquad Answer: 0.89 Solve $25^{x+2}=125^{x^{2}+1}$. There are two solutions. \qquad and \qquad . To advance in the circuit, find the sum of the solutions.
\# \square Answer: $\frac{1}{7}$ Given $g(x)=3^{x}, g(-x)$ is a reflection of $g(x)$ across the \qquad If x - axis, go to answer $\frac{18}{5}$. If y - axis, go to answer 5.5.	\# \qquad Answer: $\frac{18}{5}$ Solve for $k: 27^{a} \cdot 9^{5 a+1} \cdot\left(\frac{1}{3}\right)^{2 a}=3^{k a+2}$.
\# \square Answer: $\frac{2}{3}$ Consider the equation $y=5 \cdot 3^{-x+1}+2$. If this equation is exponential growth, go to answer $\frac{1}{7}$. If this equation is exponential decay, go to answer 7.	\# \qquad Answer: 2 The point (2, ?) is on the graph of the function $p(x)=30(6)^{-x+1}$.
\# \square Answer: $\frac{4}{3}$ The expression $\frac{3^{a} e^{5 a}}{e^{a}}+\left(3 e^{2}\right)^{a}-\frac{3^{a}}{e^{-4 a}}$ can be written as $3^{a} e^{k a}$. What does k equal ?	\# \qquad Answer: 252 If $g(x)=\frac{2}{5} \cdot e^{x}$ and $f(x)=3 x^{2}-2 x-1$, then $g\left(f\left(-\frac{1}{3}\right)\right)=$

© Virge Cornelius for Kathy Stevens and her students! 2021

