
The Trigonometric Functions

Angle Θ is in standard position. The points (4, -2) and (6, -3) are on the terminal side of Θ . Let $r = \sqrt{(x^2 + y^2)}$. Fill in the table below with the 6 ratios for each point. Leave your answers as simplified radicals.

		(4, -2)	(6, -3)
	x r		
	<u>y</u> r		
	<u>ч</u> х		
e.	<u>r</u> x		
	<u>r</u> y		
	<u>x</u> y		

For each point, find $\sin \Theta$ and $\cos \Theta$. (4, -2) (6, -3)

What do you notice?

Why is that the case?

The Six Trigonometric Functions

Reciprocal Trigonometric Functions

Examples for Trigonometric Functions Ex. 1 The terminal side of angle θ in standard position passes through P(-3, -4). Draw θ and find the values of the six trig functions.

Ex. 2 In which quadrants do $\sin \theta$ and $\tan \theta$ have opposite signs?

Ex. 3 Let θ be an angle in standard position. Evaluate $\cos \theta$, $\tan \theta$, $\cot \theta$, $\sec \theta$, and $\csc \theta$ if θ lies in Q4 and $\sin \theta = \frac{-5}{13}$.